(2-2x^2+8x)/(1+x^2)^2

Simple and best practice solution for (2-2x^2+8x)/(1+x^2)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2-2x^2+8x)/(1+x^2)^2 equation:


D( x )

(x^2+1)^2 = 0

(x^2+1)^2 = 0

(x^2+1)^2 = 0

1*x^2 = -1 // : 1

x^2 = -1

x in (-oo:+oo)

(8*x-(2*x^2)+2)/((x^2+1)^2) = 0

(8*x-2*x^2+2)/((x^2+1)^2) = 0

8*x-2*x^2+2 = 0

2*(4*x-x^2+1) = 0

4*x-x^2+1 = 0

DELTA = 4^2-(-1*1*4)

DELTA = 20

DELTA > 0

x = (20^(1/2)-4)/(-1*2) or x = (-20^(1/2)-4)/(-1*2)

x = (2*5^(1/2)-4)/(-2) or x = (-2*5^(1/2)-4)/(-2)

2*(x-((2*5^(1/2)-4)/(-2)))*(x-((-2*5^(1/2)-4)/(-2))) = 0

(2*(x-((2*5^(1/2)-4)/(-2)))*(x-((-2*5^(1/2)-4)/(-2))))/((x^2+1)^2) = 0

( x-((-2*5^(1/2)-4)/(-2)) )

x-((-2*5^(1/2)-4)/(-2)) = 0 // + (-2*5^(1/2)-4)/(-2)

x = (-2*5^(1/2)-4)/(-2)

( x-((2*5^(1/2)-4)/(-2)) )

x-((2*5^(1/2)-4)/(-2)) = 0 // + (2*5^(1/2)-4)/(-2)

x = (2*5^(1/2)-4)/(-2)

x in { (-2*5^(1/2)-4)/(-2), (2*5^(1/2)-4)/(-2) }

See similar equations:

| 20+(J+4)8-5J+7= | | 5+.15=2.36 | | 4z-8z+5=0 | | 125in^2=(3x-8)(x-6) | | (8+b)12= | | 3x-3+4x-3-1-x= | | 4/3*13*13*13 | | 27+2k=5 | | x^2+3/2x-7/16=0 | | -4s+7s+14=-10 | | 10x+14=124 | | 1.50+1.50=21.00 | | 4/3*3.14*13*13*13 | | 48=6x/2 | | ((X^5)/(8))-4=0 | | x+5/6=x-2/4 | | 3x+54=9x-12 | | 3x+4x-2=23 | | 4/3x=2/3 | | 2x+5y-4=0 | | (X^5/8)-4=0 | | 2z+9=3z | | 4x+6=2x+3 | | 4y-8=5y | | 7=100-3a | | 4.2(x+2)=12.6 | | 3y+8-y=4+y+1 | | 6/128=x/12 | | 9y+8-2y=3+6y+3 | | 8y^3+125=0 | | 9y+y=9y+9 | | -8y=32*2+0.25y |

Equations solver categories